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Optical microscopy (OM)
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Scanning Electron microscopy
(SEM)
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Scanning Electron microscop
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Transmission Electron
microscopy (TEM)
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Transmission Electron
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TEM vs. SEM
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High Resolution Transmission
Electron microscopy (HRTEM)
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3D atomic probe tomography
(3DAPT)
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Comparison between OM, SEM
& TEM

Source: Metals Handbook, vol.10, ASM

Optical Scanning electron | Transmission
microscope microscope electron
microscope
Emission Light Electron beam Electron beam
Medium Atmosphere Vacuum <10 Pa | Vacuum<10~Pa
Resolution ~200 nm Approx. S nm Approx. 0.14 nm
Contrast Absorption Secondary Scattering /
reflection electron effect diffraction
Lens Optical glass lens | Electromagnetic Electromagnetic
lens lens
Depth of focus Shallow Very deep Deep
Magnification Lens replacement | Scanning width Excitation of
change method magnifving lenses
Specimen Usually 0.5 pm | Usually 10 mm | Usually 1 pm max.
thickness min. max.
Specimen Easy Relatively easy No easy

preparation
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Toughness

* Energy to break a unit volume of material
* Approximate by the area under the stress-strain

curve,
Engineering A small toughness (ceramics)
tensile large toughness (metals)
stress, S

Engineering tensile strain, e

Brittle fracture: elastic energy
Ductile fracture: elastic + plastic energy
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Ductile Fracture in Low-carbon Steel

N,

5>
>
)
\‘ , , .“ Surface of ductile
b: ‘ . . fracture in low carbon
b .

steel, showing dimples.
Fracture usually is
initiated at impurities,
inclusions, or preexisting
voids (microporosity) in
the metal. Source:
Courtesy of K. H. Habig
and D. Klaffke

]
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Progression of a ductile Fracture

@ (b ©) (@ @

(a) early stage of necking

(b) small voids begin to form within the necked region

(c) voids coalesce, producing an internal crack

(d) the rest of the cross-section begins to fail at the periphery, by shearing

(e) the final fracture surfaces, known as cup- (top fracture surface) and cone-
(bottom surface) fracture. 20




Tension test sample after fracture

Localized deformation of a ductile material during a tensile test produces a
necked region. The micrograph shows necked region in a fractured sample
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Brittle Fracture Surface of Steel

Fracture surface of steel that has failed in A brittle fracture surface .
a brittle manner. The fracture path is The fracture path is

transgranular (through the grains). intergranular (through the
Magnification: 200x. Source: Courtesy of grain boundaries).

B. J. Schulze and S.L. Meinley and
Packer Engineering Associates, Inc.
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Fracture Types in Tension

(b) (c) (d)

(@)

(a) brittle fracture in polycrystalline metals

(b) shear fracture in ductile single crystals

(c) ductile cup-and-cone fracture in polycrystalline metals

(d) complete ductile fracture in polycrystalline metals, with 100% reduction of areg.



Material Failures

Barreling

Cracks

@
!

(a) necking and fracture of ductile materials;

(b) buckling of ductile materials under a compressive load,;

(c) fracture of brittle materials in compression,;

(d) cracking on the barreled surface of ductile materials in compression

(b)
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Engineering Stress-Strain Curve
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Engineering Stress, o

Engineering Strain, e = AL/L0)
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S Eress

Imtredmction Te Materials Scence, Chapter €, Mechanical Propertes of Metals

Stress-Strain Behavior

Elastic Plastc
. .

e e e T
—

Elastic deformaton

Feversible: when the stress
15 removed, the materal
retums to the dimension it
had before the loadmg.

Uspally strains are small
{except for the case of
plastics).

Plastic deformation

Irreversible: when the stress
15 removed., the materal

i -
; does mnot return fto it
Strain  previous dimension.
e ChiC2
Universzity of Temmezzes, Depr. of Materials Science and Eegineering &

Inireduction Te Materials Science, Chapter §, Alechanical Properties of Kledals
Stress-Strain Behavior: Elastic deformation
In tensile tests. if the deformation is elastic. the stress-
strain relationship is called Hooke's law:
o =E¢g

E 1z Young's modulus or modulus of elasticity, has the
same units as o, N/m® or Pa

Unload

Slope = modulus of
elasticity E

Siress

Load

Strain

Higher E — higher “stiffness™

University of Temnesses, Dept. of Materials Science and Esgineering 7
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Engineering Stress-Strain Curve

Express Load in Newtons (N) and Area in mm?to get
Stress in MPa.

N

mm

7 = MPa

Mechanical properties of metals are almost always
given in MPa or ksi.

1000 psi = 1 ksi = 6.89 MPa
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Hooke’s law — Elastic deformation

Elastic deformation is not permanent; it means that
when the load is removed, the part returns to its
original shape and dimensions.

For most metals, the elastic region is linear. For
some materials, including metals such as cast iron,
polymers, and concrete, the elastic region Is non-
linear.

If the behavior is linear elastic, or nearly linear-
elastic, Hooke's Law may be applied:

Where E is the modulus of elasticity (MPa)

o = ke 28



Modulus of elasticity — Stiffness (E)

CONTINUED

- _Ac_(300-0)MPa
Ae  (0.015-0.0)

=2x10° MPa

0.000 0.002 0.004 0.006 0.008 0.010
Strain
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Stress / Strain Curve

Unload

Slope = modulus
of elasticity

Stress

Load

Strain
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Stiffness of St vs. Al

Steel

|

Aluminum

0.001

0.002 0.003 0.004 0.005

Strain (in./in.)

the

behavior of

Comparison  of
elastic
steel and aluminum.
For a given stress,
aluminum deforms
elastically three times
as much as does

steel.
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Stress

Yield stress - Plastic deformation
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Al-Alloys Low carbon Steel
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Stress
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Solved Example

. . . R . . . . .
A static tension test was carried out on a plain steel rebar with circular cross section of diameter 8
mm. If the load-elongation readings were given the following table, then draw the load-

deformation relation. Calculate the yield strength, the UTS ‘ultimate tensile strength’ and the
percentage of elongation of the specimen.

Load (kN) 0.0 9.0 18.0 18.0 20.5 23.0 245 256 26.0 253
Elongation (mm) 0.00 0.072 0.144 1.0 40 80 120 16.0 20,0 24.0
30
Long Proportional Specimens: . /’A,/k
gauge length=Lo=10do=10*8 =80 mm _=» 'r—"""/d
=
Original Cross Sectional Area = :E
Ao=nd’/4=n(8)*/4 =50.30 mm’ 0
b s
0 4 8 12 18 30 4 8
Yield Stress = oy = P /A,= 18.0%1000/50.3=357MPa
Ultimate Tensile Strength = UTS = =P___ /A = 26.0* 1000/50.3 = 516=MPa
Percent age of elongation = L;—L, 6 ,100=24x100=30%
L, 80
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